Washtenaw Community College Comprehensive Report

ELE 106 Renewable Energy Technology Effective Term: Fall 2023

Course Cover

College: Advanced Technologies and Public Service Careers **Division:** Advanced Technologies and Public Service Careers

Department: Advanced Manufacturing **Discipline:** Electricity/Electronics

Course Number: 106 Org Number: 14400

Full Course Title: Renewable Energy Technology Transcript Title: Renewable Energy Technology

Is Consultation with other department(s) required: No

Publish in the Following: College Catalog, Time Schedule, Web Page

Reason for Submission: Inactivation

Change Information:

Consultation with all departments affected by this course is required.

Rationale: Stand alone course. Not offered in several years. No demand has been noted.

Proposed Start Semester: Fall 2023

Course Description: In this course, students will receive a comprehensive introduction to the principles and practical applications of solar, wind, micro-hydro and other renewable energy technologies. Motivations for developing renewable energy will be examined and students will evaluate their personal energy footprint and create a plan to reduce it. Demonstrations, field trips and labs will provide direct contact with the technology. Students will complete a written design project to explore one technology in depth.

Course Credit Hours

Variable hours: No

Credits: 3

Lecture Hours: Instructor: 45 Student: 45

Lab: Instructor: 0 **Student:** 0 **Clinical: Instructor:** 0 **Student:** 0

Total Contact Hours: Instructor: 45 Student: 45

Repeatable for Credit: NO **Grading Methods:** Letter Grades

Audit

Are lectures, labs, or clinicals offered as separate sections?: NO (same sections)

College-Level Reading and Writing

College-level Reading & Writing

College-Level Math

Level 3

Requisites

General Education

Request Course Transfer

Proposed For:

Student Learning Outcomes

1. Identify key components and principles of solar voltaic and solar thermal renewable energy technologies.

Assessment 1

Assessment Tool: Comprehensive Final Exam

Assessment Date: Fall 2021

Assessment Cycle: Every Three Years Course section(s)/other population: All Number students to be assessed: All

How the assessment will be scored: Answer key

Standard of success to be used for this assessment: A minimum of 70% of students will

correctly answer each outcome-related question

Who will score and analyze the data: Full-time department faculty

2. Identify key components and principles of non-solar renewable energy technologies.

Assessment 1

Assessment Tool: Comprehensive Final Exam

Assessment Date: Fall 2021

Assessment Cycle: Every Three Years Course section(s)/other population: All Number students to be assessed: All

How the assessment will be scored: Answer key

Standard of success to be used for this assessment: A minimum of 70% of students will

correctly answer each outcome-related question

Who will score and analyze the data: Full-time department faculty

3. Complete a simplified renewable resource assessment and design a small-scale renewable energy system.

Assessment 1

Assessment Tool: Renewable Energy Design Project

Assessment Date: Fall 2021

Assessment Cycle: Every Three Years Course section(s)/other population: All Number students to be assessed: All

How the assessment will be scored: Rubric

Standard of success to be used for this assessment: A minimum of 70% of the students will

score 70% or higher on the Design Project

Who will score and analyze the data: Full-time department faculty

Course Objectives

- 1. Identify the rationale for implementing renewable energy technologies.
- 2. Analyze personal or family energy footprint using a carbon footprint calculator and identify ways to personally reduce carbon emissions.
- 3. Identify key components and principles of a solar photovoltaic system.
- 4. Identify key components and principles of a solar thermal system.
- 5. Identify key components and principles of a wind turbine system.
- 6. Identify key components and principles of a micro-hydro system.
- 7. Evaluate the economics of a renewable energy system.
- 8. Evaluate a home or small business site for suitability of solar photovoltaic, solar thermal, passive solar, wind turbine or micro-hydro energy.

9. Identify the energy potential, develop specifications, identify components, and determine costs for a renewable energy system for a home or small business.

New Resources for Course

Course Textbooks/Resources

Textbooks

Manuals

Periodicals

. Home Power Magazine, Home Power Magazine Volume 2018

Software

Equipment/Facilities

Level III classroom

Computer workstations/lab

Other: TI 143 (Industrial Electronics Lab) Equipment for weekly labs, e.g. solar panels, meters, solar pathfinders, Pathfinder Assistance software, online Apps...

Reviewer	<u>Action</u>	<u>Date</u>
Faculty Preparer:		
Allan Coleman	Faculty Preparer	Jan 06, 2023
Department Chair/Area Director:		
Allan Coleman	Recommend Approval	Jan 06, 2023
Dean:		
Jimmie Baber	Recommend Approval	Jan 09, 2023
Curriculum Committee Chair:		
Randy Van Wagnen	Reviewed	Feb 08, 2023
Assessment Committee Chair:		
Vice President for Instruction:		
Victor Vega	Approve	Feb 09, 2023

Washtenaw Community College Comprehensive Report

ELE 106 Renewable Energy Technology Effective Term: Winter 2020

Course Cover

Division: Advanced Technologies and Public Service Careers

Department: Advanced Manufacturing **Discipline:** Electricity/Electronics

Course Number: 106 Org Number: 14400

Full Course Title: Renewable Energy Technology Transcript Title: Renewable Energy Technology

Is Consultation with other department(s) required: No

Publish in the Following: College Catalog, Time Schedule, Web Page

Reason for Submission: Change Information:

Consultation with all departments affected by this course is required.

Rationale: three year review

Proposed Start Semester: Fall 2019

Course Description: In this course, students will receive a comprehensive introduction to the principles and practical applications of solar, wind, micro-hydro and other renewable energy technologies. Motivations for developing renewable energy will be examined and students will evaluate their personal energy footprint and create a plan to reduce it. Demonstrations, field trips and labs will provide direct contact with the technology. Students will complete a written design project to explore one technology in depth.

Course Credit Hours

Variable hours: No

Credits: 3

Lecture Hours: Instructor: 45 Student: 45

Lab: Instructor: 0 Student: 0 Clinical: Instructor: 0 Student: 0

Total Contact Hours: Instructor: 45 Student: 45

Repeatable for Credit: NO Grading Methods: Letter Grades

Audit

Are lectures, labs, or clinicals offered as separate sections?: NO (same sections)

College-Level Reading and Writing

College-level Reading & Writing

College-Level Math

Level 3

Requisites

General Education

Request Course Transfer

Proposed For:

Student Learning Outcomes

1. Identify key components and principles of solar voltaic and solar thermal renewable energy technologies.

Assessment 1

Assessment Tool: Comprehensive Final Exam

Assessment Date: Fall 2021

Assessment Cycle: Every Three Years Course section(s)/other population: All Number students to be assessed: All

How the assessment will be scored: Answer key

Standard of success to be used for this assessment: A minimum of 70% of students will

correctly answer each outcome-related question

Who will score and analyze the data: Full-time department faculty

2. Identify key components and principles of non-solar renewable energy technologies.

Assessment 1

Assessment Tool: Comprehensive Final Exam

Assessment Date: Fall 2021

Assessment Cycle: Every Three Years Course section(s)/other population: All Number students to be assessed: All

How the assessment will be scored: Answer key

Standard of success to be used for this assessment: A minimum of 70% of students will

correctly answer each outcome-related question

Who will score and analyze the data: Full-time department faculty

3. Complete a simplified renewable resource assessment and design a small-scale renewable energy system.

Assessment 1

Assessment Tool: Renewable Energy Design Project

Assessment Date: Fall 2021

Assessment Cycle: Every Three Years Course section(s)/other population: All Number students to be assessed: All How the assessment will be scored: Rubric

Standard of success to be used for this assessment: A minimum of 70% of the students will

score 70% or higher on the Design Project

Who will score and analyze the data: Full-time department faculty

Course Objectives

- 1. Identify the rationale for implementing renewable energy technologies.
- 2. Analyze personal or family energy footprint using a carbon footprint calculator and identify ways to personally reduce carbon emissions.
- 3. Identify key components and principles of a solar photovoltaic system.
- 4. Identify key components and principles of a solar thermal system.
- 5. Identify key components and principles of a wind turbine system.
- 6. Identify key components and principles of a micro-hydro system.
- 7. Evaluate the economics of a renewable energy system.
- 8. Evaluate a home or small business site for suitability of solar photovoltaic, solar thermal, passive solar, wind turbine or micro-hydro energy.

9. Identify the energy potential, develop specifications, identify components, and determine costs for a renewable energy system for a home or small business.

New Resources for Course

Course Textbooks/Resources

Textbooks

Manuals

Periodicals

. Home Power Magazine, Home Power Magazine Volume 2018

Software

Solar Pathfinder Assistant. Solar Pathfinder, 5 ed. shade analysis software to use with Solar Pathfinder

Equipment/Facilities

Level III classroom

Computer workstations/lab

Other: TI 143 (Industrial Electronics Lab) Equipment for weekly labs, e.g. solar panels, meters, solar pathfinders, Pathfinder Assistance software, online Apps...

Action	Date
Faculty Preparer	Feb 17, 2019
Recommend Approval	Mar 08, 2019
Recommend Approval	Mar 11, 2019
Recommend Approval	Jul 10, 2019
Recommend Approval	Jul 18, 2019
Approve	Jul 26, 2019
	Faculty Preparer Recommend Approval Recommend Approval Recommend Approval Recommend Approval