Washtenaw Community College Comprehensive Report

FLP 101 Fluid Power Fundamentals - I Effective Term: Fall 2022

Course Cover

College: Advanced Technologies and Public Service Careers **Division:** Advanced Technologies and Public Service Careers

Department: Advanced Manufacturing

Discipline: Fluid Power **Course Number:** 101 **Org Number:** 14410

Full Course Title: Fluid Power Fundamentals - I Transcript Title: Fluid Power Fundamentals - I

Is Consultation with other department(s) required: No

Publish in the Following: College Catalog, Time Schedule, Web Page

Reason for Submission: Inactivation

Change Information:

Other:

Rationale: FLP 101 / 110 / 226 are being combined into one MEC 105 course.

Proposed Start Semester: Fall 2022

Course Description: In this class, students are introduced to the fundamental principles of fluid power in both hydraulics and pneumatics. Subject matter includes application of Pascal's Law, prime mover requirements, principle of operation of fluid power fixed displacement pumps and compressors, control valves and actuators. Component failure modes and troubleshooting concepts are also covered. FLP 101 is generally offered in the first 7 1/2 week session.

Course Credit Hours

Variable hours: No

Credits: 2

Lecture Hours: Instructor: 30 Student: 30

Lab: Instructor: 15 Student: 15 Clinical: Instructor: 0 Student: 0

Total Contact Hours: Instructor: 45 Student: 45

Repeatable for Credit: NO Grading Methods: Letter Grades

Audit

Are lectures, labs, or clinicals offered as separate sections?: NO (same sections)

College-Level Reading and Writing

College-level Reading & Writing

College-Level Math

Requisites

General Education

Request Course Transfer

Proposed For:

Student Learning Outcomes

1. Apply the concepts and formulas inherent in Pascal's Law.

Assessment 1

Assessment Tool: Departmental exam

Assessment Date: Fall 2022

Assessment Cycle: Every Three Years

Course section(s)/other population: All sections Number students to be assessed: All students

How the assessment will be scored: Departmental exam will be scored using the answer key. Standard of success to be used for this assessment: 70% of students will score 70% or higher on

the outcome-related questions.

Who will score and analyze the data: Departmental faculty will analyze the data.

2. Identify fluid power symbols.

Assessment 1

Assessment Tool: Departmental exam

Assessment Date: Fall 2022

Assessment Cycle: Every Three Years

Course section(s)/other population: All sections Number students to be assessed: All students

How the assessment will be scored: Departmental exam will be scored using the answer key. Standard of success to be used for this assessment: 70% of students will score 70% or higher on

the outcome-related questions.

Who will score and analyze the data: Departmental faculty will analyze the data.

3. Indicate operation and purpose of novice level components in fluid power circuits.

Assessment 1

Assessment Tool: Departmental exam

Assessment Date: Fall 2022

Assessment Cycle: Every Three Years

Course section(s)/other population: All sections Number students to be assessed: All students

How the assessment will be scored: Departmental exam will be scored using the answer key. Standard of success to be used for this assessment: 70% of students will score 70% or higher on the outcome-related questions.

Who will score and analyze the data: Departmental faculty will analyze the data.

4. Perform basic formula calculations as related to introductory fluid power circuits.

Assessment 1

Assessment Tool: Departmental exam

Assessment Date: Fall 2022

Assessment Cycle: Every Three Years

Course section(s)/other population: All sections Number students to be assessed: All students

How the assessment will be scored: Departmental exam will be scored using the answer key. Standard of success to be used for this assessment: 70% of students will score 70% or higher on the outcome-related questions.

Who will score and analyze the data: Departmental faculty will analyze the data.

Course Objectives

- 1. Explain two major differences between hydraulic and pneumatic circuits.
- 2. Explain why air, oil and water are all fluids.

- 3. Explain Pascal's Law as it relates to fluids.
- 4. Explain Bernoulli's principle as it relates to fluids.
- 5. Identify the International Standards Organization (ISO) and American National Standards Institute (ANSI) schematic symbols of commonly-used fluid power components.
- 6. Describe the function of three types of positive displacement hydraulic pumps.
- 7. Explain the operation of fluid cylinders and motors.
- 8. Perform basic formula calculations to determine force, velocity, torque, time, area, volume, rpm, pressure and horsepower.
- 9. Determine pump size and relief setting needed to accomplish a particular task.
- 10. Given gallons per minute (GPM) of the pump, determine proper fluid conductor size for pump inlet and outlet lines.
- 11. Describe aeration and cavitation, and list three causes for each.
- 12. Describe the relationship between gauge pressure, absolute pressure and vacuum in inches of mercury.
- 13. Differentiate between parallel and series circuits, and describe the difference.
- 14. Describe the difference between positive and non-positive pumps.
- 15. List advantages and disadvantages of direct acting and compound pressure controls.

New Resources for Course

Course Textbooks/Resources

Textbooks

IFPS. *Lightning Reference Manual*, 8th ed. International Fluid Power Society, 2001, ISBN: 9789970008001.

Eaton Hydraulics. *Industrial Hydraulics Manual*, 5th ed. Eaton Hydraulics, 2000, ISBN: 9780978802202.

Manuals

Periodicals

Software

Equipment/Facilities

Level III classroom Other: Document camera

Reviewer	Action	<u>Date</u>
Faculty Preparer:		
Allan Coleman	Faculty Preparer	Jan 20, 2022
Department Chair/Area Director:		
Allan Coleman	Recommend Approval	Jan 20, 2022
Dean:		
Jimmie Baber	Recommend Approval	Jan 21, 2022
Curriculum Committee Chair:		
Randy Van Wagnen	Reviewed	Feb 15, 2022
Assessment Committee Chair:		
Vice President for Instruction:		
Kimberly Hurns	Approve	Feb 18, 2022

Washtenaw Community College Comprehensive Report

FLP 101 Fluid Power Fundamentals - I Effective Term: Spring/Summer 2020

Course Cover

Division: Advanced Technologies and Public Service Careers

Department: Advanced Manufacturing

Discipline: Fluid Power Course Number: 101 **Org Number:** 14410

Full Course Title: Fluid Power Fundamentals - I Transcript Title: Fluid Power Fundamentals - I

Is Consultation with other department(s) required: No

Publish in the Following: College Catalog, Time Schedule, Web Page **Reason for Submission:** Three Year Review / Assessment Report

Change Information:

Consultation with all departments affected by this course is required.

Other:

Rationale: Three-year syllabus review **Proposed Start Semester:** Fall 2019

Course Description: In this class, students are introduced to the fundamental principles of fluid power in both hydraulics and pneumatics. Subject matter includes application of Pascal's Law, prime mover requirements, principle of operation of fluid power fixed displacement pumps and compressors, control valves and actuators. Component failure modes and troubleshooting concepts are also covered. FLP 101 is generally offered in the first 7 1/2 week session.

Course Credit Hours

Variable hours: No

Credits: 2

Lecture Hours: Instructor: 30 Student: 30

Lab: Instructor: 15 Student: 15 Clinical: Instructor: 0 Student: 0

Total Contact Hours: Instructor: 45 Student: 45

Repeatable for Credit: NO Grading Methods: Letter Grades

Audit

Are lectures, labs, or clinicals offered as separate sections?: NO (same sections)

College-Level Reading and Writing

College-level Reading & Writing

College-Level Math

Requisites

General Education

Request Course Transfer

Proposed For:

Student Learning Outcomes

1. Apply the concepts and formulas inherent in Pascal's Law.

Assessment 1

Assessment Tool: Departmental exam

Assessment Date: Fall 2022

Assessment Cycle: Every Three Years

Course section(s)/other population: All sections Number students to be assessed: All students

How the assessment will be scored: Departmental exam will be scored using the answer key. Standard of success to be used for this assessment: 70% of students will score 70% or higher on

the outcome-related questions.

Who will score and analyze the data: Departmental faculty will analyze the data.

2. Identify fluid power symbols.

Assessment 1

Assessment Tool: Departmental exam

Assessment Date: Fall 2022

Assessment Cycle: Every Three Years

Course section(s)/other population: All sections Number students to be assessed: All students

How the assessment will be scored: Departmental exam will be scored using the answer key. Standard of success to be used for this assessment: 70% of students will score 70% or higher on

the outcome-related questions.

Who will score and analyze the data: Departmental faculty will analyze the data.

3. Indicate operation and purpose of novice level components in fluid power circuits.

Assessment 1

Assessment Tool: Departmental exam

Assessment Date: Fall 2022

Assessment Cycle: Every Three Years

Course section(s)/other population: All sections Number students to be assessed: All students

How the assessment will be scored: Departmental exam will be scored using the answer key. Standard of success to be used for this assessment: 70% of students will score 70% or higher on the outcome-related questions.

Who will score and analyze the data: Departmental faculty will analyze the data.

4. Perform basic formula calculations as related to introductory fluid power circuits.

Assessment 1

Assessment Tool: Departmental exam

Assessment Date: Fall 2022

Assessment Cycle: Every Three Years

Course section(s)/other population: All sections Number students to be assessed: All students

How the assessment will be scored: Departmental exam will be scored using the answer key. Standard of success to be used for this assessment: 70% of students will score 70% or higher on the outcome-related questions.

Who will score and analyze the data: Departmental faculty will analyze the data.

Course Objectives

- 1. Explain two major differences between hydraulic and pneumatic circuits.
- 2. Explain why air, oil and water are all fluids.

- 3. Explain Pascal's Law as it relates to fluids.
- 4. Explain Bernoulli's principle as it relates to fluids.
- 5. Identify the International Standards Organization (ISO) and American National Standards Institute (ANSI) schematic symbols of commonly-used fluid power components.
- 6. Describe the function of three types of positive displacement hydraulic pumps.
- 7. Explain the operation of fluid cylinders and motors.
- 8. Perform basic formula calculations to determine force, velocity, torque, time, area, volume, rpm, pressure and horsepower.
- 9. Determine pump size and relief setting needed to accomplish a particular task.
- 10. Given gallons per minute (GPM) of the pump, determine proper fluid conductor size for pump inlet and outlet lines.
- 11. Describe aeration and cavitation, and list three causes for each.
- 12. Describe the relationship between gauge pressure, absolute pressure and vacuum in inches of mercury.
- 13. Differentiate between parallel and series circuits, and describe the difference.
- 14. Describe the difference between positive and non-positive pumps.
- 15. List advantages and disadvantages of direct acting and compound pressure controls.

New Resources for Course

Course Textbooks/Resources

Textbooks

IFPS. *Lightning Reference Manual*, 8th ed. International Fluid Power Society, 2001, ISBN: 9789970008001.

Eaton Hydraulics. *Industrial Hydraulics Manual*, 5th ed. Eaton Hydraulics, 2000, ISBN: 9780978802202.

Manuals

Periodicals

Software

<u>Equipment/Facilities</u>

Level III classroom
Other: Document camera

<u>Reviewer</u>	<u>Action</u>	<u>Date</u>
Faculty Preparer:		
Jim Popovich	Faculty Preparer	Aug 12, 2019
Department Chair/Area Director:		
Thomas Penird	Recommend Approval	Aug 14, 2019
Dean:		
Brandon Tucker	Recommend Approval	Aug 22, 2019
Curriculum Committee Chair:		
Lisa Veasey	Recommend Approval	Sep 19, 2019
Assessment Committee Chair:		
Shawn Deron	Recommend Approval	Oct 10, 2019
Vice President for Instruction:		
Kimberly Hurns	Approve	Oct 14, 2019

Course Discipline	Code & No: FLP 101	Title: Fluid Po	wer Fundamentals - I	Effect	ive Term <u>WI 2010</u>
Division Code:	HAT	Department Cod	e: <u>INTD</u>	Org	#:
Don't publish:	College Catalog	Time Schedule	e □Web Page		
New course a	labus review/Assessment re		Reactivation of inac		
	on: Note all changes tha		Form applies only to cl	hanges noted.	
required. Course discipl Must submit Course title (w Course descrip Course objecti	with all departments affected ine code & number (was FI inactivation form for previous Fluid Power Fundament on ives (minor changes) credits were: 4	LP 111)* ious course.	☐ Total Contact Hour ☐ Distribution of cont lecture: lab ☐ Pre-requisite, co-req ☐ Change in Grading ☐ Outcomes/Assessm ☐ Objectives/Evaluati ☐ Other	act hours (contact ho contact hours clinical quisite, or enrollmen Method lent	nours were: other)
The content taught (101) training to all	se or course change. Atta in FLP 111 has been split i areas (robotics, fluid power	nto two separate cou and numerical contr	rses FLP 101 and FLP 1 ol) and then focus on th	10 to allow students eir area of concentr	s to receive introductory ation.
	ent and divisional signature				
Print: Tim	Popovich Faculty/Preparer mmendation Pyes 1 Department Chair	Signature	All gelevar	t departments cons	Date: 12/1/09 Date: 12/1/09
-	conditional approval	62 11			/ /
Recommendation	on Yes 🗌 No 📈	an's/Administrator's	Signature		12/21/09 Date
Recommendation Tabled	Yes No	Mallas urriculum Committee	Chair's Signature		3/1/1C) Date
		ce President's Signatu	Lu se pag		3-12-10 Date
Do not write in shade Log File 12/2/1095 Please return complete	Écopy 🗌 Banner	C&A Database	C&A Log File		ntact fee du for posting on the website.

Office of Curriculum & Assessment

http://www.wccnet.edu/departments/curriculum/

MASTER SYLLABUS

*Complete ALL sections w	which apply to the course	e, even if changes a	re not bein	g made.
Course:	Course title:			
FLP 101	Fluid Power Fundamentals	- I		
Credit hours: 2	Contact hours per semes	ter: Are lecture		Grading options:
If variable credit, give range:		nuctor separate se		☐P/NP (limited to clinical & practica)
to credits	Lecture: 30 30 Lab: 15 15 Clinical:	offered in sections No - lect or clinical	als are n separate ures, labs,	□S/U (for courses numbered below 100) □Letter grades
		section	ii uie saine	
Prerequisites. Select one:				
⊠College-level Reading & Writing	-	eading/Writing Scores ation at Level I prerequisite)		No Basic Skills Prerequisite (College-level Reading and Writing is <u>not</u> required.)
In addition to Basic Skills in R	eading/Writing:			
Level I (enforced in Banner)				
Course and or and or and or			Concurr Enrollm Can be taken to	ent Must be enrolled in this class
Level II (enforced by instructor o			Test	Min. Score
□ and □ or □ and □ or				
Enrollment restrictions (In add	ition to prerequisites, if applic	cable.)		
□and □or Consent required		mission to program re	•	□and □or Other (please specify):
Please send syllabus for tran Conditionally approved courses Insert course number and title y E.M.U. as U of M as as	s are not sent for evaluation. you wish the course to transfe	er as.] as] as] as

Course:	Course title:			
FLP 101	Fluid Power Fundamentals - I			
Course description State the purpose and content of the course. Please limit to 500 characters.	This is an introductory class covering the fundamental principles of fluid power, both hydraulics and pneumatics. Subject matter includes application of Pascal's Law, prime mover requirements, principles of operation of fluid power fixed displacement pumps and compressors, control valves and actuators. Component failure modes and troubleshooting are also covered. This course contains material previously taught in FLP 111. FLP 101 is generally offered in the first 7½ week session.			
Course outcomes	Outcomes	Assessment		
List skills and knowledge students will have after	(applicable in all sections)	Methods for determining course effectiveness		
taking the course.	Apply the concepts and formulas inherent in Pascal's Law.	Departmental exam		
Assessment method Indicate how student	Identify fluid power symbols.	Departmental exam		
achievement in each outcome will be assessed to determine student	Indicate operation and purpose of novice level components in fluid power circuits.	Departmental exam		
achievement for purposes of course improvement.	Perform basic formula calculations as related to introductory fluid power circuits.	Departmental exam		
Course Objectives	Objectives	Evaluation		
Indicate the objectives that support the course	(applicable in all sections)	Methods for determining level of student performance of objectives		
outcomes given above.	Explain two major differences between hydraulic and pneumatic circuits.	Exams, quizzes and completion of lab exercises		
Course Evaluations	Explain why air, oil and water are all fluids.			
Indicate how instructors will determine the degree	Explain Pascal's Law as it relates to fluids.			
to which each objective is	Explain Bernoulli's principle as it relates to fluids.			
met for each student.	Identify the ISO or ANSI schematic symbols of commonly-used fluid power components.			
	Describe the function of three types of positive displacement hydraulic pumps.			
	Explain the operation of fluid cylinders and motors.			
	Perform basic formula calculations to determine force, velocity, torque, time, area, volume, rpm, pressure and horsepower.			
	Determine pump size and relief setting needed to accomplish a particular task.			
	Given GPM of the pump, determine proper fluid conductor size for pump inlet and outlet lines.			
	Describe aeration and cavitation and list three causes for each.			
	Describe the relationship between gage pressure, absolute pressure and vacuum in inches of mercury.			
	Differentiate between parallel and series circuits and describe the difference.			
	Describe the difference between positive and non-positive pumps.			
	List advantages and disadvantages of direct acting and compound pressure controls.			

MASTER SYLLABUS

List all new resources needed for course, including library materials.					
Student Materials:					
List examples of types	Industrial Hydraulics Manual by Easton Hydrau	Estimated costs			
Texts	Fluid Power Designers' Lighting Reference Mai	\$ 90.00			
Supplemental reading			'		
Supplies	3-ring binder		\$ 22.00		
Uniforms	Calculator		\$ 20.00		
Equipment	Safety Glasses				
Tools					
Software					
Equipment/Facilities: Check all that apply. (All classrooms have overhead projectors and permanent screens.)					
Check level only if the specified equipment is needed for all sections of a Off-Campus Sites					
course.		☐ Testing Center			
Level I classroom					
Permanent screen & overhead projector					

 \square ITV

TV/VCR

Other ____

☐Data projector/computer

Level II classroom

□ Level III classroom

Level I equipment plus TV/VCR

Learning outcomes to be assessed (list from Page 3)	Assessment tool	When assessment will take place (semester & year)	Course section(s)/other population	Number students to be assessed
Apply the concepts and formulas inherent in Pascal's Law.	Departmental exam	Fall 2010 and every three years thereafter	All sections	All students
Identify fluid power symbols.	Departmental exam	Fall 2010 and every three years thereafter	All sections	All students
Indicate operation and purpose of novice level components in fluid power circuits.	Departmental exam	Fall 2010 and every three years thereafter	All sections	All students
Perform basic formula calculations as related to introductory fluid power circuits.	Departmental exam	Fall 2010 and every three years thereafter	All sections	All students

Scoring and analysis of assessment:

Indicate how the above assessment(s) will be scored and evaluated (e.g. departmentally developed rubric, external evaluation, other). Attach the rubric/scoring guide.

Departmental exam will be scored using the answer key.

- 2. Indicate the standard of success to be used for this assessment.
 - The overall class average on all questions identified for assessment will be 70% or higher.
- 3. Indicate who will score and analyze the data (data must be blind-scored).

Level II equipment plus data projector, computer, faculty workstation

Departmental faculty will blind-score and analyze the data.

Explain the process for using assessment data to improve the course.

Assessment results will be discussed by faculty teaching the class and presented at a department meeting. Areas of weakness and their solutions will be identified. Necessary course changes will be implemented.