Washtenaw Community College Comprehensive Report

MST 210 Performance Engine Technology Effective Term: Fall 2025

Course Cover

College: Advanced Technologies and Public Service Careers **Division:** Advanced Technologies and Public Service Careers

Department: Transportation Technologies

Discipline: Motorcycle Service Technology (new)

Course Number: 210 Org Number: 14100

Full Course Title: Performance Engine Technology
Transcript Title: Performance Engine Technology

Is Consultation with other department(s) required: No

Publish in the Following: College Catalog, Time Schedule, Web Page

Reason for Submission: Inactivation

Change Information:

Consultation with all departments affected by this course is required.

Rationale: This course has been phased-out.

Proposed Start Semester: Fall 2025

Course Description: In this class, students will explore performance powertrain theory and the skills to develop and build reliable engines. Topics such as selection of complementary engine components, precision measuring tools, performance engine testing simulators and engine component machining tools will be covered. Students will also learn the advantages and disadvantages of raising the performance levels of an engine. Upon successful completion of the course, students will be able to identify, design, install and test engine enhancing components.

Course Credit Hours

Variable hours: No

Credits: 4

Lecture Hours: Instructor: 45 Student: 45

Lab: Instructor: 60 Student: 60 Clinical: Instructor: 0 Student: 0

Total Contact Hours: Instructor: 105 Student: 105

Repeatable for Credit: NO Grading Methods: Letter Grades

Audit

Are lectures, labs, or clinicals offered as separate sections?: NO (same sections)

College-Level Reading and Writing

College-level Reading & Writing

College-Level Math

No Level Required

Requisites

Prerequisite

Academic Reading and Writing Levels of 6; MST 140 minimum grade "C"

and

Prerequisite

ATT 225 minimum grade "C"

General Education

Request Course Transfer

Proposed For:

Student Learning Outcomes

1. Identify mechanical components used to develop performance internal combustion engines.

Assessment 1

Assessment Tool: Outcome-related module exam questions

Assessment Date: Winter 2021

Assessment Cycle: Every Three Years

Course section(s)/other population: All sections Number students to be assessed: All students How the assessment will be scored: Answer key

Standard of success to be used for this assessment: 75% percent of the students will score 75%

or higher.

Who will score and analyze the data: Departmental faculty

2. Evaluate internal combustion engine component selection using measurements and calculations.

Assessment 1

Assessment Tool: Skills checklist Assessment Date: Winter 2021

Assessment Cycle: Every Three Years

Course section(s)/other population: All sections Number students to be assessed: All students How the assessment will be scored: Rubric

Standard of success to be used for this assessment: 75% percent of the students will score 75%

or higher.

Who will score and analyze the data: Departmental faculty

Assessment 2

Assessment Tool: Outcome-related module exam questions

Assessment Date: Winter 2021

Assessment Cycle: Every Three Years

Course section(s)/other population: All sections Number students to be assessed: All students How the assessment will be scored: Answer key

Standard of success to be used for this assessment: 75% percent of the students will score 75%

or higher.

Who will score and analyze the data: Department faculty

3. Develop performance engine components using precision measuring tools and machining techniques.

Assessment 1

Assessment Tool: Student project Assessment Date: Winter 2021

Assessment Cycle: Every Three Years

Course section(s)/other population: All sections Number students to be assessed: All students

How the assessment will be scored: Departmentally-developed rubric

Standard of success to be used for this assessment: 75% percent of the students will score 75% or higher.

Who will score and analyze the data: Departmental faculty

Course Objectives

- 1. Differentiate between stock and performance engine camshafts.
- 2. Differentiate between stock and performance engine cylinder heads.
- 3. Differentiate between stock and performance engine connecting rods.
- 4. Differentiate between stock and performance engine crankshafts.
- 5. Differentiate between stock and performance engine pistons.
- 6. Differentiate between stock and performance engine cylinders.
- 7. Differentiate between stock and performance engine exhaust systems.
- 8. Measure cylinder head combustion chambers.
- 9. Measure swept volumes of pistons.
- 10. Measure piston dome displacements.
- 11. Measure camshaft lobes.
- 12. Measure flow rates of cylinder ports.
- 13. Simulate engine designs with stock components.
- 14. Machine engine cylinders.
- 15. Machine cylinder heads.
- 16. Machine valvetrain components.
- 17. Simulate engine designs with performance components.
- 18. Develop reliable powertrain component packages.

New Resources for Course

Course Textbooks/Resources

Textbooks Manuals

Periodicals

Software

Equipment/Facilities

Level III classroom Other: Dynamometer

Reviewer	<u>Action</u>	<u>Date</u>
Faculty Preparer:		
Rocky Roberts	Faculty Preparer	Jan 06, 2025
Department Chair/Area Director:		
Rocky Roberts	Recommend Approval	Jan 06, 2025
Dean:		
Eva Samulski	Recommend Approval	Jan 08, 2025
Curriculum Committee Chair:		
Randy Van Wagnen	Reviewed	Apr 15, 2025
Assessment Committee Chair:		
Vice President for Instruction:		
Brandon Tucker	Approve	Apr 15, 2025

Washtenaw Community College Comprehensive Report

MST 210 Performance Engine Technology Effective Term: Fall 2020

Course Cover

Division: Advanced Technologies and Public Service Careers

Department: Transportation Technologies

Discipline: Motorcycle Service Technology (new)

Course Number: 210 Org Number: 14100

Full Course Title: Performance Engine Technology
Transcript Title: Performance Engine Technology

L. C. L. C

Is Consultation with other department(s) required: No

Publish in the Following: College Catalog, Time Schedule, Web Page

Reason for Submission: Course Change

Change Information:

Consultation with all departments affected by this course is required.

Pre-requisite, co-requisite, or enrollment restrictions

Outcomes/Assessment Objectives/Evaluation

Rationale: Conditionally approved Fall 2009 course seeking full approval. Add necessary prerequisite.

Proposed Start Semester: Winter 2021

Course Description: In this class, students will explore performance powertrain theory and the skills to develop and build reliable engines. Topics such as selection of complementary engine components, precision measuring tools, performance engine testing simulators and engine component machining tools will be covered. Students will also learn the advantages and disadvantages of raising the performance levels of an engine. Upon successful completion of the course, students will be able to identify, design, install and test engine enhancing components.

Course Credit Hours

Variable hours: No

Credits: 4

Lecture Hours: Instructor: 45 Student: 45

Lab: Instructor: 60 Student: 60 Clinical: Instructor: 0 Student: 0

Total Contact Hours: Instructor: 105 Student: 105

Repeatable for Credit: NO Grading Methods: Letter Grades

Audit

Are lectures, labs, or clinicals offered as separate sections?: NO (same sections)

College-Level Reading and Writing

College-level Reading & Writing

College-Level Math

No Level Required

Requisites

Prerequisite

Academic Reading and Writing Levels of 6; MST 140 minimum grade "C" and

Prerequisite

MST 225 minimum grade "C"

General Education

Request Course Transfer

Proposed For:

Student Learning Outcomes

1. Identify mechanical components used to develop performance internal combustion engines.

Assessment 1

Assessment Tool: Outcome-related module exam questions

Assessment Date: Winter 2021

Assessment Cycle: Every Three Years

Course section(s)/other population: All sections Number students to be assessed: All students How the assessment will be scored: Answer key

Standard of success to be used for this assessment: 75% percent of the students will score 75%

or higher.

Who will score and analyze the data: Departmental faculty

2. Evaluate internal combustion engine component selection using measurements and calculations.

Assessment 1

Assessment Tool: Skills checklist Assessment Date: Winter 2021

Assessment Cycle: Every Three Years

Course section(s)/other population: All sections Number students to be assessed: All students How the assessment will be scored: Rubric

Standard of success to be used for this assessment: 75% percent of the students will score 75%

or higher.

Who will score and analyze the data: Departmental faculty

Assessment 2

Assessment Tool: Outcome-related module exam questions

Assessment Date: Winter 2021

Assessment Cycle: Every Three Years

Course section(s)/other population: All sections Number students to be assessed: All students How the assessment will be scored: Answer key

Standard of success to be used for this assessment: 75% percent of the students will score 75%

or higher.

Who will score and analyze the data: Department faculty

3. Develop performance engine components using precision measuring tools and machining techniques.

Assessment 1

Assessment Tool: Student project Assessment Date: Winter 2021

Assessment Cycle: Every Three Years

Course section(s)/other population: All sections Number students to be assessed: All students How the assessment will be scored: Departmentally-developed rubric Standard of success to be used for this assessment: 75% percent of the students will score 75% or higher.

Who will score and analyze the data: Departmental faculty

Course Objectives

- 1. Differentiate between stock and performance engine camshafts.
- 2. Differentiate between stock and performance engine cylinder heads.
- 3. Differentiate between stock and performance engine connecting rods.
- 4. Differentiate between stock and performance engine crankshafts.
- 5. Differentiate between stock and performance engine pistons.
- 6. Differentiate between stock and performance engine cylinders.
- 7. Differentiate between stock and performance engine exhaust systems.
- 8. Measure cylinder head combustion chambers.
- 9. Measure swept volumes of pistons.
- 10. Measure piston dome displacements.
- 11. Measure camshaft lobes.
- 12. Measure flow rates of cylinder ports.
- 13. Simulate engine designs with stock components.
- 14. Machine engine cylinders.
- 15. Machine cylinder heads.
- 16. Machine valvetrain components.
- 17. Simulate engine designs with performance components.
- 18. Develop reliable powertrain component packages.

New Resources for Course

Course Textbooks/Resources

Textbooks

Manuals

Periodicals

Software

Equipment/Facilities

Level III classroom Other: Dynamometer

Reviewer	Action	<u>Date</u>
Faculty Preparer:		
Shawn Deron	Faculty Preparer	Dec 17, 2019
Department Chair/Area Director:		
Justin Morningstar	Recommend Approval	Dec 17, 2019
Dean:		
Brandon Tucker	Recommend Approval	Dec 17, 2019
Curriculum Committee Chair:		
Lisa Veasey	Recommend Approval	Feb 19, 2020
Assessment Committee Chair:		
Shawn Deron	Recommend Approval	Feb 24, 2020
Vice President for Instruction:		
Kimberly Hurns	Approve	Feb 25, 2020